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Abstract. We consider the infinite-range spin models with Hamiltonkar= Z{f’jzl Ji.joioj,

where J is the quantization of a map of the torus. Although deterministic, these models are
known to exhibit glassy behaviour. We show, through explicit computation of the Gibbs free
energy, that unlike the random case this behaviour disappears in the corresponding spherical and
continuousXY models. The only minimum of the Gibbs free energy is indeed the trivial one,
even though the ground state is highly degenerate.

1. Introduction

Various classes of infinite-range, deterministic Ising spin models which reproduce at least
some of the ‘glassy’ properties of the random models have been introduced in the last few
years [1-6]. It has been conjectured [4] that, unlike the random case, where it has been
proved that the long-range spherical model admits a ‘glassy’ phase transition [7] (see also
[8] for a review), the discrete nature of the spin variables is in this case a necessary condition
to generate complex thermodynamic behaviour. The numerical analysis indeed shows [4]
that this is the case for the fully frustrated Ising model on a hypercubic cell: this model is
glassy and aging in the infinite-dimensional limit, but the numerical evidence also shows the
disappearance of this behaviour in the corresponding compact and contiXiiocsse, i.e.
when the spin variables are replaced by unimodular complex numbers. Moreover, similar
results are conjectured [4] in the case of Heisenberg and spherical spins.

Here this conjecture is actually proved in the context of the deterministic models
introduced in [2, 3, 6], which are characterized by two properties.

(i) The N x N, infinite-range, non-translation-invariant coupling matiX"’ defining
the Hamiltonian

1 N
HY =3 > 1o (1.1)
ij=1
coincides with (the real or imaginary part of) the unitary propagator quantizing the discrete
dynamics generated by a symplectic matrix with integer coefficients

s=<“ b) a,b,c,d € Z,ad —bc =1
c d

acting as a Hamiltonian map over the 2-tofi’s We recall that the operator quantizing a
Hamiltonian map of the torus is& x N unitary matrix [10, 11],N being the inverse of the
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Planck constant therefore, in this context the thermodynamic limit— oo is formally
equivalent to the classical limit.

The case of [1-3], where glassy behaviour has been detected in numerical simulations,
corresponds to the quantization of the unit symplectic matrix

sz(_ol é)

Here the coupling matrix¥ turns out to coincide with (twice the uppermost left block of)
the discrete sine (cosine) Fourier transform

W = sin( 2rij )
b V2N +1 2N +1
The case of [6], where the existence of a ‘glassy’ critical point can be proved, corresponds
instead to models whose coupling matrices are defined by the quantization of hyperbolic
maps overT? of the form

_ 2g 1,

rather than elliptic ones such & The corresponding discrete dynamical systems vyield
indeed the best known examples of chaotic behaviour, whilgenerates in contrast a
periodic discrete dynamical system of period four. The quantizatiof isf[10, 11, 13] the
unitary N x N matrix

i,j=1,...,N. (1.2)

1 27i
VA = Oy exp= (e = e+ gk?) (L3)
with |Cy| = 1 so that the models considered in [6] are defined by the Hamiltonians
HM(0) = ¥, J(A) Y oj0, with J(A)N = Re[V(4) V], ie.
1 2r
JAW = CN\/—N cosﬁ(gjz — jk + gk?). (1.4)

(i) The ground state of both models is highly degenerate, depending on some
arithmetical properties of the integat. (In fact, for the first class of models the ground state
can be explicitly computed [3] if ¥ +1 is prime withN odd, and its asympotic degeneracy
along many other subsequences is proved in [9]. For the second class of models the proof
is valid only in the present spherical case.) As has long been known [14], this suggests non-
existence of the thermodynamic limit or, more precisely, the existence of different limits
whetherN goes to infinity along subsequences corresponding to degenerate ground states
or not.
We thus consider here the Hamiltonians (1.2) and (1.4) (in fact, we replace (1.2) by any
orthogonalN x N matrix) in the (continuous and compact, as in [&]Y case as well as
in the spherical one, namely
N
o €R Zaiz =N.
i=1
This system is known to have the same thermodynamic limit as the Heisensspin
models [8]. As usual, these spherical models turn out to be exactly solvable, in the
spherical and also in the (continuous and comp#ét)case, in the sense that the Gibbs (i.e.
magnetization-dependent) free energy can be computed in closed form as a function of the

1 The physical intuition is that the phase space has volume 1, and can accommodate At quasttum states
of volume#, so thatNh = 1.
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limiting spectral measure. Its stationarity conditions yield the TAP (or mean-field) equations
of the model [12], which are proved to admit only the trivial (i.e. zero magnetization)
solution for any positive temperature, so that the system admits only the paramagnetic
phase.

2. The models and the results

Before stating the results it is worth recalling some properties of the matrices defining our
models.

(1) The choice of the form ofA among the linear hyperbolic maps of the torus
is motivated by the fact that if;, b,c,d are as above we clearly have/(A) =
V<N>T(A) = v®™~14), whenceo (Re [V(AM]) = Relp(V(A)™M)]. Hence, denoting
g4’ 0 < )L,({N) < 21,k = 1,..., N, the eigenvalues o¥ (4)"", those of J(4)™ are
V) = cosrV.

(2) Let EM(x), dun(x) be the spectral family and the spectral densityVafd)®),
respectively,

1 r(N)
EM(x) = Z v din (x) = 5 Z Ms(x — 1) (2.1)
k=1

k:kf’gx

where ther(N) distinct characteristic roots."’ have multiplicitiesM", the dimension
of the corresponding orthogonal eigenprojectioﬂ%’v). V(AW always admits the
eigenvalue (1), and it has been proved in [18] that the Wwéalit of the sequence @y (x),
N=12 ..., asN — oo is the (normalized) Lebesgue measuseanh the circles?.

(3) By point (1) the eigenspaces df¥) and V™ coincide, so that by the spectral
theorem

2
J(AWN = / cosx dE™) (x). (2.2)
0

(4) The orthogonalV x N matrices are clearly included in the above formalism: in this
case one has"’ = 0 or A" = 7 so thatp"’ = +1, r(N) = 2 and

0 O<x<m
E(N)(x) — Hgﬁli] T <x <21 (2.3)
(N) (N) _
H{l} +H{—1} x =2
duy(x) = a(N)S(x) + (1 — a(N))é(x — m) (2.4)

wherea(N) = M1(N)/N is the relative proportion of the eigenvalue 1 or, equivalently,
Na(N) = dim Ran TT33).
(5) Let once more

EMx =Y m" (2.5)

k:pﬁ,\'gx

be the spectral family of the operatdjN). We denote byE (x) the limiting (orthogonal)
projection operator valued measure ¢hof E®)(x), supported on [2r7[, and J the

1 V denotes the complex conjugate ¥f and VT its transpose.
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corresponding set of bounded self-adjoint operator&in
2
J =/ cosx dE (x). (2.6)
0

(6) Any eigenvector corresponding to the eigenvalue ¥é? clearly defines a ground
state of H™). The ground state is therefore degenerate of ordEr. We recall that the

numerical evidence [16] indicates that for ‘most’ subsequefdgs, M{Nk) is bounded as

N, — oo. There are, however, subsequences for WIM{W” — 00 as Ny — oo.
Consider now the spherical model with Hamiltoniai’, namely

N N
H(a)(N) = — Z Jify)aiaj o= (o1,...,0n) ZUIZ = N.
i,j=1 i=1
Let m; = (0;) be the magnetization at site and
1 N
2
= — m-
4= ; ;

the Edwards—Anderson order parameter. Rescale the magnetizatiaAd oy; = /N pu;,
so that the Edwards—Anderson order parameter becqn?.eszl'.“:l pn?,0< g < 1. Then
the first result of this paper can be formulated as follows.

Proposition 2.1. Let x belong to the open unit ball i#?, i.e.q = Y 7o, u? < 1, and let
N — oo. Let dv(x) denote @/, where d is the Lebesgue measure on 2], or the
pure-point measures(x) + (1 — a)d(x — ), 0 < a < 1. Then

(1) the condition

4 dv(x)
/0 2\ — pcosx 1 2.7)

implicitly defines a smooth functiofi — A(8) > /2 on [0, +oc];

(2) for B € [0, +oo[ the specific Gibbs free energy(u, 8) = ®(u, 8)/N has the
following limit

1
—Bo(u, B) = E(In[Zn(l -pl+D+ g(J/L, w+GBA-7q) (2.8)
where

1 1/[7

G(B) = 5(2/\(,8) -1 - é,/ In(2x — B cosx) dv(x). (2.9)
0

Remark. The functionG is smooth forg < 1 because. > B/2. Hence the free energy

(2.8) is a family (indexed by8) of continuous functionals inside any closed ball or radius

<1 in ¢2. The operatol/ is likewise continous irf?.

Given the expression (2.8) for the free energy the pure magnetization states are defined
by its local minima; the stationarity conditions ¢f
i ,

Tog TG BA—gum =) =0 (2.10)
represent the TAP equations of the model. There exist phases other than the paramagnetic
one if and only if the TAP equations (2.10) admit at least a solution other than the trivial
solution © = 0. Hence the critical temperature for a phase transition, if any, is given by

their linearization neag = 0:
nill+2BG'(B) — Bl = 0. (2.11)
We can thus formulate the main result of this paper.
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Proposition 2.2. Let 8 > 0. Then the TAP equations (2.10) admit only the trivial solution
uw=0.

Remarks.

(1) At T = 0 the configuration of the system must a ground state, at whieh (g;) =

m; so thatg = 1. The ground states thus lie at the boundary 1 of the unit ball in¢?.

Hence, even though the system can lie in different magnetization states=al, none of

them generates long-range order, and the degeneracy does not affect the existence of the
thermodynamic limit.

(2) The pure magnetization states at zero temperature are, however, ‘glassy’, in the
sense that they are neither ferromagnetic nor antiferromagnetic: namely, according to the
original definition of Edwards and Anderson, the average magnetization is zego=budt
It is indeed proved (see [9] for the orthogonal case, and [13] for the second one) that

1w
lim — =0
N—>oco N ;Mk

if /L]((N) are the components of any normalized eigenvector @ corresponding to the

eigenvalue 1.

(3) The spherical model which we refer to is sometimes called the microcanonical model.
The spherical constraint can be alternatively imposed on the mean, as done originally by
Kosterlitz [7] (this represents the canonical or mean spherical model: for this issue see
[8, section 3]). In the present non-translation invariant case the mean spherical model could
a priori yield different thermodynamics in the presence of phase transitions; accordingly,
we will check later that in the present situation the spherical and the mean spherical models
yield the same free energies for all temperatures.

The result is even simpler for the (continuous and comp&dt)model, defined once
more by the Hamiltonian

N
H(o)™ =~ Z J,-SIJY)U:'UJ o= (01,...,0n)
i,j=1
where nowo; = €%, 0< 6, < 2r,i =1,..., N. The fact that the only stationary point of

the Gibbs free energy is the trivial one takes the following form.

Proposition 2.3. Leth; andmy, k =1, ..., N, be the magnetic field and the magnetization
at sitek, respectivelyr = (hy, ..., hy), m = (mq, ..., my). Let Q™ be the orthogonal
matrix diagonalizing/ ™, and G*")(m, B) be the Gibbs free energy. Then there exists a
monotonic continuous function — f(x) on ] — oo, oo[, vanishing linearly atc = 0, such
that

oG
=0,k=1,...,N — (OMF)m) =0 (2.12)

amk
whereF = (f,..., f).

3. Solution of the model and proof of the results

We first compute, by standard methods (see e.g. [8, section 3.4]) the Helmholtz free energy
Fy(p) for the (microcanonical) spherical model with the Hamiltonid®") in the (site-
dependent) magnetic field= (hq, ..., hy). By definition the partition functiorZ v (8) at
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external, site-dependent magnetic fiéleé= (hy, ..., hy) IS

+oo c+ioco d)\
ZN(ﬂ,h)zf exp[B( J(N)00/2+,3h0]_1_[f / o
Qy c—

X eXp|:A<N — Zf’;z) + ,3/22 Ji(jN)aiaj + B Zh,ﬂ,}.
i ij i

Here Qy denotes the sphefE; o2 = N, ¢ > 0 and the equality follows (see e.qg. [17]) by
the well knowns function representatlon

1 c+ioco
S(x —a) = / e dy.
2 i c—ioo
Let JS be the diagonal form off™ : J\V' = y-1y™My, whereU = U™ is the
N x N unitary matrix whose columns are eigenvectors/6f. Denote once morg;’ the
eigenvalues o/ ™). Denote furthermore

S=Uco (h,o) = (H,S) (3.2)
where
ZHkSk = Zhi ZUikSk = ZUikhiSk — H; = ZUikhi = H=U*h=U"h.
k i k ki i
(3.2)
One has, therefore, assuming > BpY/2,k = 1,...,N, which implies uniform

convergence of the integrals and hence their interchangeability

+00 c+ioo
Zy(B.h) = 1"[[ dskf —exp[ ( —ZS/?)+ﬁ/ZZP/ﬁVSf+ﬁZHkSk}
k k k

c+ico d)» eNA +o0o N )
= / P H/ dSy expl=( — Bpy /2)S; + BHSk]-
c k=1 —0oQ0

—ioo 2

Therefore, withA(x, B) = \/A — Bpy /2

B c+ioco da N ,BHk 2
Zn (B, h) _/: o= — eV Hf ds; exp[ — (A(k, B)S; — 240 8) ,3))

>—100

,32Hk2 ]_ /H—Iood_)‘e]\m N ( T >1/2 |: IBZHkZ ]
“a10.67) = ) 20 U GiTpmr2) P2 —sp2

c+lioo N
= / Texp[NGN(X,h)+E(In27r+1):|

c—ioo Tl
where
B 1Y

N N 1E B2H?2
NGy, B,h) + —=(n2 D=Nri+—-—Inm—=Y In{r—ZpV|+= Pk
VOB + S 2r 1) = Nit S inz 2;n< S )+2;2x_,3p,gv

N 1
Nt Yinr + Yin2— Lindetans —BI)
2 2 2
ﬂz (N)y—1
S @M = BI) T, H).
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Hence

Gy, B, h) = %(a -1 - % Indet2xl — BJ™N) + 55 p <(2u BIMYh, h). (3.3)

We proceed now to evaluate the last integral through the saddle-point methd-foro.
First note that the limit olGy (A, h) asN — oo is
B dvj, (x)

2 Jo (@2r — Bcosx) (3.4)

G\, B, h) = —(ZA 1)——/ In(2:n — B cosx) dv(x) + —
where

1
v (x) = linooﬁ Z (h, TI,h).

k:pr<x
To apply the saddle-point method we need a preliminary result.

Lemma 3.1. There isho > 0 such that the equation (2.7)
T dv) dvy (x)
Ah,B) = —-1=0 3.5
FQh, B) /o 2) — pcosx +h / (21 — B cosx)?2 (3.5)
implicitly defines a smooth functioh = f (8, ) on [0, +o0[ x[0, hg] such that. (0, 0) = 3

Proof. Since we may assume that the measureclis normalized, the pointd = 0, h =
0,1 = %) fulfils the equation. Let now: = 0 and consider separately the two cases
dv =dx/m and & = ad(x) + (1 — a)d(x — ). In the first case we have

1 [" dx 1
f(x,o,ﬁ)=;/0 5 poos ~ a7 (3.6)

whence, solving fon., f(8,0) = %\/ﬂz + 1 (the second root has to be discarded because
smaller thang/2). Moreover,

oF /” dv(x) / dvy, (x)
oA o @r—8 (21n — Bcosx)2 @2r—B (21 — B cosx)3
for |8] < 2» andk small and hence near= f(8,0),h = 0. The result now follows by

the implicit function theorem in this first case. In the second case we have instead

1-—
F(.,0,8) = [2/\“_/3 o Jjg} 3.7)

whence

f(B,0) = F[1+4B2+1-48(1 - )]
and the proof is complete by the same argument verifying the conditions of the implicit
function theorem. O

We can now evaluate the integral

c+ioco d)\‘
In(B. h) = / S eNonem
c—ioco 2 [
asN — oo through the saddle-point method. As a functiomof C, Gy (%, h) is clearly
holomorphic forx € C\] — oo, B/2] and stationary for

1 1 1SN (h, Tk
_Z vt Z_Z : k1\>/2=1' (3.8)
N = 2+ - By N = @ —Bp)
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As is known, any real solution of this equation minimizes locally(8g (1)); on the other
hand, the limit of (3.8) is equation (3.5)
/” dv(x) 4 p2 T du(x) _1
o 2\ — Bcosx o (2» — Bcosx)?
whose solution has been discussed in lemma 3.1. Thereforé,-asoco
Iy(B. h) = Y 9PP (1 + O(N)
whereG(B, h) = limy_. Gy(f(B, h), B, h), namely, by (3.3) and (3.4)

B /” vy (x)

1 1 /(7
G(B,h) = E(Zf -1 - 5/0 In2f — pcosx) dv(x) + — ; m (3.9

2
where f = f(B, h) is defined by lemma 3.1, formula (3.5). Hence, since

N
Zy(B, h) = expl=BFy(B, h)] = In(B, h) exp[E(In 21 + 1)}

we obtain asN — oo the following expression of the specific Helmholtz free energy
fu(B,h) =limy_ Fy(B8,h)/N at arbitrary magnetic field:

—Bf(B.h) = 3(n27 + 1) + G(B, h). (3.10)

Proof of proposition 2.1. We proceed to compute the Gibbs free energy. To this end, we
have to perform the Legendre transform-eBf (8, h) with respect toh. Hence we first
perform the Legendre transform efg Fy (8, h) and then take th&V — oo limit. The
rescalingm; = +/Nu; on the magnetizations generates the rescaling: n;/+/N on the
dual variables, the site-dependent magnetic figldsOne has, therefore,

—BOPN(u, B) = g@[ﬂl’w(ﬂ, m — B, w)] = BFvB. n(w) — Bn(w), 1) (3.11)

wheren(n) : RY — RV is obtained invertingy; = 8 Fy/0n;,i = 1,..., N. The inversion
is possible because the Hessian matrix-gf Fy (8, n) with respect tok, given obviously
by

2
(@r1 = BTN 0, )0

an; om;
is positive definite since > g/2. Performing the Legendre transform we get

N 1 1
—BOy (. p) = SN2 + 2] — S Indew2is — 1) — 2 7 wi(@rsiy — BT

i,j=1
(3.12)
where now) is determined by the stationarity condition
B
PON _ o, (3.13)
dA

Note that, equivalently,

N 1 al
—B®y (1. f) = S [In27 +21] - 5 Indet2il — BIMNM)Y — Nag + g >0 iy
ij=1
(3.14)
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where once more

N

ni=5 > mi

1 k=1

N
q:
k=

2|~

denotes the Edwards—Anderson order parameter. We reduce equation (3.13) to (3.8) and
hence to (3.5) a&%v — oo up to a rescaling of variables. To this end, first write (3.14) in
the form

N N
poy =—2(n2zr (-] +1) - g 421 I win; — NG, B) - (3.15)
i,j=
where we have set
NGL(, B) = %(2“1 —q)—1)— % Indet2r(1l—g)I — (L —gq)J™M). (3.16)

Hence the stationarity condition (3.13) becomésidr)/dr = 0O, that is, by (3.16)

1 ﬁ: ! =1 (3.17)
N = 2.1-9) —BL-qp '
which coincides with equation (3.8) at zero magnetic field up to the rescaling
AL — A
(=)~ (3.18)
pl—q) — B.

We can, therefore, take over to the present case the results of the above discussion: the
(weak) limit of (3.17) is equation (3.5) up to the rescaling (3.18). ThereforeVas oo

the solution of (3.17) tends ta(1 — g) = f(B(L — q)), f(B) = f(B,0). Now recall

that, by the definitions (3.4), (3.9) and (3.16F% (A, ) = Gy(M(1 — q), (1 — q))
whereGy (A, B) = Gy(A, 8,0). Eliminating A(1 — ¢g) and settingG(f(8), 8) = G(B),
G(f(BA—q)), B(l—q)) = G(B(1—q)) we finally obtain by (3.14) and (3.15) at the limit

N — o0

1
—Bé(u, p) = E(In[(Zn(l -pl+D+ g(fua ) +G(BL—q)).

This proves (2.8) and hence proposition 2.1. O

3.1. The mean spherical case

Let us now verify that the mean spherical model yields the same free energy. By definition
(see e.g. [8, section 2]), the partition function is now

,BZ N N
Zn(B,h) = /R eXp[ﬂU(N)m 0)/2+ Blho) = = ;j(o,? — 1)} 11 do;

where the Lagrange multiplier is this time to be determined by imposing the spherical
constraint only in the mean, namely by the condition

< ﬁ: oi2> =N (3.19)
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where(-) denotes the (normalized) average over the above distribution. By diagonalization
of J™ and straightforward computation of the Gaussian integral we get, in the above
notation,

N/2
Zy(B, h, z) = €2 (%) [det(z1 — J5")] Y2 exp[g((zl — Iy, H)]

= exp[zvcﬁ)(z, B, h) + %(In 21 + 1)}

where

G2z, B h) = %(ﬁz -1 - %Inﬂ — % Indetzl — pJ™) + %((zl — BINY I, ).

The limit of G?(z, 8. h) asN — oo is

1 1 1 (7 B [T dvy, (x)
) = = —-1)— = - = - Py
G ph) = 5z~ 1 — 5 Inp 2/0 InG=cosndvt) +7 | cost:

The Lagrange multipliet is determined by the condition
-1 S, V) Bz N, N
Zy /RN ;a[ exp[,B(J 0,0)/24 B(h, o) — > ;(gi — 1):| g do, —N =0

— az[ - % In(ZN)} =0 — 39.[GP (2, B, W] =0.

As N — oo we get
1/‘” dv(x) +,3 T dvp(x) B
0

- —— ——=0. 3.20
z—cosx 2Jy (z—cosx)2 2 ( )

2

Setz = 24/B. Then clearlyz is a solution of (3.20) if and only ik solves (3.5). To sum
up, we obtain

2\ 1 1 1
@ =G® =2 -1 —=InB—=
Gz, B,h=G <ﬁ,ﬁ,h>_2(2A 1) 2In/3 5

i 1 B [T Bdu(x)
In{ - In(2n — d = _—
X/o [n(ﬁ)+ n( ﬂCOSx)] v(x)+2/0 2. — p cosx
=G, B, h)
and the subsequent discussion can be taken over to the present case without change.

Proof of proposition 2.2. By (2.8) the stationarity conditions of the specific Gibbs free
energy with respect to the magnetizations are the TAP equations (2.10), rewritten here for
convenience of exposition

i ,

g +28G (B(A—g)pi — B )i =0. (3.21)

The standard procedure (see e.g. [15]) to determine the highest critical temperature, if any,
for the transition from the paramagnetjc; (= 0 Vi) phase is first to linearize these equations
nearg = 0, i.e. to neglect all terms of order, / > 2. In this approximation we get the
linearized TAP equations

wi(L+28G'(B) — B(J); = 0. (3.22)
Furthermore, these equations are considered atMsjzgamely

ni(1+28G' (B) — BT ™M) =0 o= (A1, -y fhn) (3.23)
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where, howeverG(-) is computed at the thermodynamic limit — oco. If u* is any
eigenvector of/ ") corresponding to the eigenvalue 1 the equations (3.22) become

1+ 2BG'(B) — B = 0. (3.24)

Let us first prove that in both cases this equation has no solutions. # dx /, by (3.9)
(with 2 = 0) we get (recall that. = f(8))

G()\,,B):)\—}—Eln [2A+—M] (3.25)
2 2 2
Recalling that. = f(8) = /1 + B2/2, (3.24) becomes
1-BW1+p2+1)+p%=0 (3.26)

which clearly has no solutions because the left-hand side is positive,ef). In the
case of @ = o[8(x) + (1 — @)8(x — )] we have

2
Here the implicit equation (3.5) of lemma 3.1 clearly yields the function

f(B,@.0) = §[1+ V42 + 1 - 4B(1 — 20)]
and (3.24) now becomes, after a straightforward computation,

GO B) = h— % _ % IN2: - B) — — L In@ + B). (3.27)

o 1—«
1 — —1]1=0. 3.28
+ﬁ[2f—ﬂ TRy ] (3.28)

This equation has no solutions on, fBoo[ because the left-hand side is easily verified to
be monotonically increasing i for any O< « < 1 and is 1 forg = 0.
Let us now reduce the nonlinear equations (3.21) to the linear case just discussed.
Settingé = B(1 — ¢) they become
i +26G Epi — TN =0 (3.29)
or
[(A+25G'(ENT —§JMu=0

wherel is the identityN x N matrix. This equation has a solution if and onlifis such
that 1+2£ G'(¢) belongs to the spectrum 7™, This occurs only if #-26G'(£) -1 =0
for some—1 < A < 1, which is impossible as we have checked before. This completes the
proof of proposition 2.2. O

Let us now consider the following.

Proof of proposition 2.3. By definition the partition function is given by the following
integral

N
ZN(ﬁ,h)z/ [Jexp g(J(N)a,a)+/3(h,a)i|5(|cri|—1)da,- da ;.
RZN i=1

As above, the change of variables (3.1) and (3.2) yields

N
Zy(B. H) = ]"[/Zexp gp,ws,w? +ﬂH,~s,~]8(|Si| ~ 1) ds; dS;
i=1 /R L
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whence, integrating in polar coordinates,

,8 N N
Zn(p, H)y =exp5 3 pi| [ lo(BHY)

k=1 k=1
wherely(x) = Jo(ix) is the well known Bessel function of order zero. Consider the specific
Helmholtz free energyfy (8, H) as a function of the rotated field,

1
Bfn(B, H) = v InZy (B, H).

One clearly has

B N w 1 N
BfnB, H) = —— E Py + N E In Io(8 Hy).
k=1

2N &
Now set
d H
My = PNEH
9H,
(rotated magnetizations). Differentiating, we get
I)(BH,
My = B LBy
N Iy(BH))

whenceM,(H;) — 0 asH, — 0 for any 8. This means that the system is paramagnetic
for any temperature. Since, moreover, the right-hand side is monotonic with respect to
H;, € [0, +o0o[, this last relation can be globally inverted to yield a smooth function
H, = H(M;),l =1, ..., N, vanishing only as\f; — 0.

By definition the Legendre transform gffy (8, H) is

N 1 N
Bow (B, M) =3 McHi(Mi) — = > In Io(B Hi (M)
k=1 k=1

and it is immediately verified tha@t8¢y (8, M)/0M,; = H;(M;). The stationarity conditions

for the Gibbs free energy, i.e. the TAP equations of the models, are therefore the conditions
H(M;) =0, =1,..., N, which admit only the trivial solutiony; =0,/ =1,..., N.
Rotating back to the variables and/ we conclude the proof of the proposition. [
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